Q-Composer and CpR: A Probabilistic Synthesizer and Regulator of Traffic
(A Probabilistic Control of Buffer Occupancy)

Sami Ayyorgun*

Abstract— We present and show the correctness of two algo-
rithms called Q-Composer and CpR. Q-Composer is a probabilis-
tic traffic-synthesizer and CpR is a probabilistic traffic-requlator.
Given a cumulative distribution function F', Q-Composer synthe-
sizes a flow that when fed into a single-input single-output net-
work element, the distribution of the queue-size probability at the
element closely follows F'. CpR regulates an arbitrary traffic so
that when the regulated traffic (i.e. the output of CpR) is fed into
a single-input single-output network element, the distribution of
the queue-size probability at the element closely follows a pre-
specified cdf F'. CpR can be viewed as a probabilistic generaliza-
tion of deterministic Leaky-bucket regulators. Q-Composer and
CpR are straightforward algorithms to implement and have ap-
plications in providing end-to-end probabilistic quality-of-service
guarantees, multimedia encoding/decoding, resource allocation,
and n simulation studies, beside other areas.

1 Introduction

We present two algorithms called Q-Composer and Compos-
er-powered-Regulator (CpR). Q-Composer is a probabilistic
traffic-synthesizer and CpR is a probabilistic traffic-regula-
tor. Input to Q-Composer, as well as to CpR, is in general
a service-curve S (see [1,2]) and a cumulative distribution
function (cdf) F. For simplicity, we present Q-Composer
and CpR for the special case where service-curve S in their
input is of the form S(n) = max{0,p-n} for an integer
rate p; in which case, S in their input is replaced by rate p.

Given a p and an F' as input, Q-Composer synthesizes a
flow probabilistically that when fed into a work-conserving
server with rate p (see Section 2 for the definition), the dis-
tribution of the queue-size probability at the server closely
follows F. Similarly, given a p and an F' as input and an
arbitrary traffic source, CpR regulates the traffic generated
by the source such that when the regulated traffic is fed
into a work-conserving server with rate p, the distribution
of the queue-size probability at the server closely follows F'.

A motivation for controlling (i.e. composing or regulat-
ing) the queue-size distribution of a queue, as indicated
above, arises in various networking or computing problems.
The motivations included in this paper are twofold: 1) [Pro-
viding End-to-End Probabilistic QoS Guarantees] A proba-
bilistic characterization of network traffic had recently been
introduced in [3,4]. A special case of this characterization
is given by Definition 1 in this paper. Studies in [3-5] have
shown that this characterization enables a tractable anal-
ysis of end-to-end probabilistic Quality-of-Service (QoS)

*Los Alamos National Laboratory, PO Box 1663, MS B287, Los
Alamos, NM 87545. E-mail: sami@lanl.gov, feng@lanl.gov

§Dept. of Electrical and Computer Eng., University of Maryland,
College Park, MD 20742. E-mail: sarut@glue.umd.edu

Sarut Vanichpun®

Wu-chun Feng*

guarantees for both transient and steady-state regimes in
communication networks. However, such a tractability re-
quires that a characteristic of any traffic entering to a net-
work is known a priori in accordance with the introduced
traffic model. Q-Composer and CpR are a solution to this
requirement, and make the proposed analysis framework
in [3-5] viable. A traffic source can use Q-Composer intrin-
sically to generate flows that conform to a given character-
istic in accordance with the new model, or the source can
be regulated externally by CpR to achieve the same goal.
2) [Realistic Simulation Studies] Q-Composer can be used
in various simulation tools, such as ns and OPNET, to gen-
erate realistic traffic traces that induce desired queue dis-
tributions on various network elements. Such distributions
might be observed a priori in a real system. Later on, a sim-
ulation study of the system might be asked for in evaluating
new network protocols, where the observed queue distribu-
tions are needed to be regenerated at least for cross traffic
to simulate the system realistically.

The rest of the paper is organized as follows: Section 2
provides background. Section 3 introduces Q-Composer.
Section 4 introduces CpR. Section 5 provides some simu-
lation results. Section 6 concludes the study.

2 Background

We adopt a discrete-time formulation in the context of
packet networks. A flow is a discrete random process whose
sample-paths are nondecreasing functions defined from the
integers to the nonnegative integers. The value R(n) of a
flow R at time n denotes the cumulative number of pack-
ets that pass through a cross-section of a communication
link by time n (inclusive), where the packets counted for R
are specified under a certain classification. Given a flow R,
the process r defined as r(n) = R(n) — R(n — 1) is called
the rate of flow R. A network element is an input-output
device or a medium that accepts packets at its input and
delivers them at its output. Packets are assumed to instan-
taneously arrive to or depart from a network element, i.e. a
whole packet can arrive instantaneously at some time k
and depart at time n where n > k. Note that a packet can
depart in the same interval in which it has arrived. The ca-
pacity ¢(n) of a network element at time n is the maximum
number of packets that it can serve/deliver at that time. A
network element is said to be work-conserving if it serves
packets at full capacity whenever it has packets to serve,
unconditionally of any other criteria. Any work-conserving
server is assumed to be initially empty with respect to a
time origin, i.e. not storing any packet before that time,
unless otherwise noted in the text. Finally, the notation 2T
stands for max{0, z}.

We adopt a special case of the probabilistic traffic-char-
acterization introduced in [4]. This special case is given by
the following definition (see also [3]).

Definition 1 A flow R is said to be bursty with a rate p
and a bounding function f, and denoted as R~ (p, f), if
the probability distribution of the queue-size (Q of a work-
conserving server with rate p, when fed with flow R, satisfies

P(Q(n) > o) < f(o)

where f is defined from the integers to the nonnegative real
numbers.

for all n and for all o,

The following properties are assumed to hold for any bound-
ing function f without loss of generality [4]:

1. f is nonincreasing, as the probability corresponding to
a o in Definition 1 is nonincreasing with o.

2. f(o) < 1for all o, as the probability of an event can not
be larger than 1. Also, it is assumed for mathematical
convenience that f(o) =1 for all o < 0.

3. lim f(o) =0, as any cdf F satisfies lim F(z) = 1.
o—00 T—00
This characterization, as well as its general form in [4],

are motivated by the studies in [6-8]. The single most im-
portant difference between this characterization (in general,
its general form) and the ones in [6-8] is that our character-
ization allows for a synthesis and a regulation method such
as Q-Composer and CpR which are tight and simple. It is
not clear if the characterizations in [6-8] allow for tight, as
well as simple, synthesis and regulation methods. See [4] for
a detailed comparison of our characterization with the ones
in [6-8]. Such synthesis and regulation methods are vital for
the viability of the proposed analysis methods. Q-Composer
and CpR delivers that viability. See [3-5] for the tractable
analysis framework enabled by this characterization for pro-
viding end-to-end probabilistic QoS guarantees.

3 Q-Composer

Q-Composer is a probabilistic traffic-synthesizer. It synthe-
sizes a flow which conforms to a given characteristic (i.e. a
rate p and a bounding function f) in accordance with Defi-
nition 1. Given a p and an f, Q-Composer generates a ran-
dom integer sequence like (4,0,5,2,...) which stands for
generating 4 packets at time slot 1, 0 packet at time slot 2,
5 packets at time slot 3, and so on. Q-Composer utilizes
another algorithm called Composer-pmf (see Appendix B).
The pseudocode for Q-Composer is give below in plain text.

Q-Composer
Input: An integer rate p and a bounding function f.

Output: A synthetic flow R such that R ~ (p, f).

Body: Find a probability mass function (pmf) f4 by calling
Composer-pmf (see Appendix B). Input to Composer-pmf
are p and f too, and the output is a pmf f4 defined on the
integers that fa(a) =0 for all @ < 0.

Have two random-number generators to realize the follow-
ing two independent random processes:

1. (X(n) : n > 1) is a sequence of independent and identi-
cally distributed (iid) random variables that each ran-
dom variable X (n) has cdf F' given below

F(o) 21— f(o) forallo.

2. (A(n) :n > 1) is a sequence of iid random variables
that each random variable A(n) has the cdf F4 cor-
responding to f4.

Let r denote the rate of flow R being synthesized. Obtain
flow R by the following recurrence which holds for alln > 1
and with boundary value Q(0) = 0;

i
r(n) = min {A(n), [X() + p=Qm-1)| } (1)
Q(n) = max {0, Q(n — 1) +r(n) — p}. (2)
End Q-Composer.

In the above recurrence, Q(n) is equal to the queue-size at
time n of an imaginary work-conserving server with rate p
when fed with synthetic flow R; as this can be noted by (2).
Also, we note that given a uniform random-number genera-
tor (e.g. Linear Congruential Generator) it is easy to gener-
ate random numbers whose distribution follows a given cdf,
e.g. by the inverse transform method; see for example [9].
Q-Composer synthesizes a flow as specified in its Output,
provided that Composer-pmf produces an f4 which satisfies
a certain condition. The correctness of Q-Composer, as well
as the condition that fa needs to satisfy, is given by the
following theorem whose proof is provided in Appendix A.

Theorem 1 Let p and f be an Input to Q-Composer. If fa
used in Q-Composer satisfies the following condition

(f*fa)lo+p)- flo) + flo+p)-F(o) < f(o)

where operator ‘¥’ stands for convolution in Linear Systems
Theory, then Q-Composer synthesizes a flow R as specified
in its Output; i.e. when R is fed into a work-conserving
server with rate p, the queue-size () of the server satisfies

P(Q(n) > 0) < f(0) (4)

Composer-pmf provides a solution for fy4; input to
Composer-pmf are p and f too, and the output is a pmf fy4
satisfying condition (3). The pseudocode for Composer-pmf
is given in Appendix B. A sample solution for f4 when
p =10 and f(o) is equal to fpareto(c) given by (7) is shown
in Figure 1. Condition (3) is trivial to verify; for this solu-
tion, both sides of (3) fall on top of each other; see Fig. 2.

Vo, (3)

for all n and for all o.

4 CpR

A use of synthetic flows generated by Q-Composer is to reg-
ulate traffic with known or unknown characteristics in ac-
cordance with Def. 1, so that the regulated traffic conforms

0.035

0.03 -

0.025

0.02

0.015

0.01r-

0.005

a

0
10° 10" 10° 10°

Figure 1: The pmf fa computed by Composer-pmf for p = 10
and f(o) equal to fpareto (o) given by (7).

10° T e

107

10k

10°L ; R EEEEE! i TR
10° 10" 107 10°

Figure 2: Both sides of the inequality in condition (3),
which fall on top of each other for p = 10, f(o) equal to
[pareto given by (7), and fa shown in Figure 1.

to a given characteristic (i.e. a rate p and a bounding func-
tion f). The main idea in obtaining a regulation method by
using Q-Composer is simple; feed the traffic to be regulated
into a buffer and then drain the buffer with a rate that is
as close as possible to the rate of synthetic traffic begin
generated by Q-Composer for a given p and f. Composer-
powered-Regulator (CpR) is a such regulation method whose
pseudocode is given below in plain text.

CpR
Input: An integer rate p, a bounding function f, a positive
integer time T', an integer rate ¢, and a traffic source.

Output: A regulated traffic whose flow R is bursty with
rate p and bounding function f,i.e. R ~ (p, f).

Body: Find a probability mass function (pmf) f4 by calling
Composer-pmf (see Appendix B). Input to Composer-pmf
are p and f too, and the output is a pmf f4 defined on the
integers that fa(a) =0 for all @ < 0.

Have two random-number generators to realize the follow-
ing two independent random processes:

1. (X(n) : n > 1) is a sequence of independent and identi-
cally distributed (iid) random variables that each ran-

dom variable X (n) has cdf F' given below
F(o) =1~ f(0)

2. (A(n) :n > 1) is a sequence of iid random variables
that each random variable A(n) has the cdf F4 cor-
responding to f4.

for all o.

Have a buffer, called B, to deposit the packets that the traf-
fic source generates. Have a server with constant capacity ¢
attached to buffer B, to serve the packets being queued.

Turn on the traffic source at time 1. Let rg.. denote the rate
of source traffic. Let B be initially empty; i.e. B(0) = 0.
Read the source traffic from time 1 until time 7" and deposit
the read packets into buffer B. Do not eject any packet from
buffer B before time T'. Hence, B(T') = Ry (T).

Obtain the regulated traffic, whose rate is denoted by r, by
the following recurrence: Let Q(0) =0, for n > 1,

ran(n) = min {A(n), [X(n) + p— @~ 1)] '},

Q(n) = max {0, Q(n — 1) + ryn(n) — p},

r(T+n—1)=min{B(T +n—1), rem(n), c},

(5)
(6)

eject (i.e. serve) r(T' 4+ n — 1) many packets from
the head of buffer B at time T'+n — 1,

read the source traffic at time T+ n, and
deposit the read packets into buffer B,

B(T+n)=B(T+n-1) —r(T4+n—1) + rec(T+n).
End CpR.

The correctness of CpR is given by the following theorem
whose proof is provided in Appendix C.

Theorem 2 A flow R obtained by CpR is bursty with rate p
and bounding function f given in its Input; i.e. R ~ (p, f).

A bounding function f entered in the Input of CpR can
be determined based on the queue-size probabilities being
targeted for the regulated traffic (e.g. desired overflow prob-
abilities for a given set of queue-sizes, average queue-size,
etc.). We assume for practical purposes that f(o) = 0 for
all o larger than some sufficiently large M, e.g. M = 105,

A rate p entered in the Input of CpR can be determined
in light of the following theorem which is proven in [4].

Theorem 3 Given a flow R ~ (p, f), where Y o f(o) is
finite, the long-term average rate u of R satisfies

B[R(n) - R(K)] _

w2 limsup
n—k =

(n—k)—o0

The long-term average rate of a traffic can be estimated by
various statistical methods (e.g. The Law of Large Num-
bers [10]). Or, it can be known a priori by the intrinsic
properties of the source generating the traffic. Let i denote

the estimate of the long-term average rate of the traffic gen-
erated by the source that one would like to regulate. We
pick an integer rate p larger than /.

In CpR, we would like the capacity of buffer B (i.e. the
maximum number of packets that B can store), buffer size
B(T +mn — 1) for any positive n, and rate ¢ be “large”. A
“large” capacity for B would help avoid likely packet-loss
due to overflow of B. A “large” ¢ and B(T +n —1) for
any positive n would help get a tight regulation of traffic
(i.e. the empirical bounding function of the regulated traffic
would be close to the targeted bounding function f).

A holdup time T in the Input of CpR can be determined
based on the tolerance of source traffic to latency; the larger
the better, given the remarks in the previous paragraph.

5 Simulation Results

We carried out some simulation studies to see how
Q-Composer and CpR perform. In some of the simulations,
we used real traffic traces collected on the institutional
wide-area network of the Los Alamos National Laboratory,
which we refer to as LANL-WAN. Our results show that
both algorithms perform very well. The following two sub-
sections present a part of this simulation study.

5.1 Simulations for Q-Composer

We performed four sets of simulations in which we gener-
ated synthetic traffic by using Q-Composer for various Input
specifications. The bounding functions that we picked were
all heavy-tailed.

Sim-High: We used a 1-hour-long real traffic trace col-
lected on LANL-WAN to specify an Input to Q-Composer.
From this trace, we obtained a flow sample-path, called Ry,
by first slotting the time into 1 millisecond intervals and
then counting the number of packet arrivals in each inter-
val. The average rate of R; over the duration of the 1-hour
collection period was 12.523 packets per time slot. For the
purpose of finding a characteristic of R; in accordance with
Def. 1, we picked a rate p; that is equal to 15. We found
an estimate of the corresponding tight bounding function
simply by feeding R; into a work-conserving server with
rate 15 and then by observing the queue-size distribution
of the server (see [4] for the measurability of the charac-
terization given by Definition 1). This estimate is denoted
by fi and shown in Figure 3. Note that the utilization of
the server in finding a characteristic of Ry, i.e. 121223, was
about 83%; hence the name of the simulation Sim-High.

Next, we input p; and f; into Q-Composer and generated
1000 synthetic traffic sample-paths each 1-hour long. We
found of an estimate of the bounding function in character-
izing each sample-path i as (p1, fsyn-i), as indicated in the
previous paragraph. We computed the point-wise average
of these 1000 bounding-function estimates. This average is
denoted by fsyn and is shown in Figure 3 for comparison
with fi. As we have expected by Theorem 1, fsyn is less
than or equal to f; everywhere.

ag
10° 10" 10° 10°

Figure 3: Plot for Sim-High.

— EE : '
— —Jm Lo : |

i
0 1 a

Figure 4: Plot for Sim-Moderate.

Sim-Moderate: This set of simulations was the same as
Sim-High except that we used another 1-hour-long real traf-
fic trace collected on LANL-WAN, the flow sample-path
being obtained was called R,, the average rate of Ry was
7.7364 packets per time slot, p; was replaced with p» where
p2 = 19, and the estimate of the tight bounding function be-
ing computed in characterizing R> was denoted by f2. The
utilization of the work-conserving server in finding the char-
acteristic (po, f2) was about 41%; hence the name of the
simulation Sim-Moderate. The target bounding function f,
and the average of the estimated 1000 bounding functions of
synthetic traffic being generated are shown in Fig. 4. This
plot also provides a satisfactory support for Theorem 1.

Sim-Pareto: For this set of simulations, we picked a
bounding function called fpareto given below, which cor-
responds to a truncated Pareto distribution;

1 if 0<0,

(c+1)72 if 0< o <102,
0 if o> 103.

(7)

fpareto (U) =

The rate p being picked was 10. We input p and fpareto tO

— Jpareto
= = fom
i FER RS

10° 10" 10° 10°

Figure 5: Plot for Sim-Pareto.

weibull : I Lo s
\
= = fsm \

i i i \

0 1 2

10 10

Figure 6: Plot for Sim-Weibull.

10

Q-Composer and generated a set of 1000 synthetic traffic
sample-paths each 1-hour long. The average of the esti-
mated bounding functions for each sample-path, i.e. fsyn,
and the target bounding function fpareto are shown in Fig. 5.
This plot too provides a satisfactory support for Theorem 1.

Sim-Weibull: This set of simulations was the same as
Sim-Pareto except that we picked a different bounding func-
tion called fyeibun given below;

1 if 0<0,
05e=7"" if 0< o <104,
0 if o> 104,

fweibull (U) =

which corresponds to a truncated Weibull distribution. The
rate p was 10—unchanged as noted. The average of the es-
timated bounding functions and the target bounding func-
tion fyeibun are shown in Fig. 6 which also supports Thm. 1.

5.2 Simulations for CpR

We performed two sets of simulations in which we regulated
a fictitious traffic source yielding a flow whose sample-paths

— fpareto
o= - f

] e i I 0
10° 10 10° 10°

Figure 7: Plot for Sim-Reg-Pareto.

— f weibull

— = Jreg |
i i i |
0 1 2 3 4

10 10 10

Figure 8: Plot for Sim-Reg-Weibull.

were all given by R; that was obtained in Sim-High. Recall
that R; was derived from a real traffic trace. We regu-
lated this traffic source by CpR so that the regulated traf-
fic conforms to a characteristic specified as (-, preg), where
preg = 13, in accordance with Definition 1.

Sim-Reg-Pareto: We picked fpareto given by (7) as the
target bounding function for the regulated traffic to possess
in its characteristic. We input p = preg, f(0) = fpareto(0),
T =1, ¢= 00, and the fictitious traffic source described
above into CpR, and regulated the source 1000 times; hence,
obtained 1000 regulated flow sample-paths. The capacity
of the buffer B used in CpR was chosen to be infinite. We
found an estimate of the tight bounding function of each
regulated flow sample-paths, as indicated in Sim-High. We
computed the point-wise average of these 1000 bounding-
function estimates. This average is denoted by frez and
shown in Figure 7 which supports Theorem 2.

Sim-Reg-Weibull: This set of simulations was the
same as Sim-Reg-Pareto except that we replaced fpareto
by fweibull specified in Sim-Weibull. The corresponding plot
is given by Figure 8 which too supports Theorem 2.

6 Conclusions and Discussions

We introduced a probabilistic traffic-synthesizer called
Q-Composer and a probabilistic traffic-regulator called CpR.
Both Q-Composer and CpR are straightforward to imple-
ment, and have applications in providing end-to-end proba-
bilistic QoS guarantees, multimedia encoding/decoding, re-
source allocation, and in simulation studies—see Section 1.
CpR can be viewed as a probabilistic generalization of de-
terministic Leaky-bucket regulators [1,11-13].

Queue-size distributions resulted by traffic that Q-com-
poser or CpR generate for a given (p, f), on other network el-
ements (e.g. a work-conserving server with a larger rate) can
easily be found by the analysis framework studied in [3,4].

Q-Composer and CpR are not “asymptotic algorithms”.
That is, the inequalities that they ensure to satisfy (namely,
(4) for Q-Composer and (33) for all n and o in the proof of
Theorem 2 for CpR) hold for any time n. Thus, both al-
gorithms also enable an explicit and tractable performance
analysis in transient regimes. This is an important prop-
erty since most of the communication sessions in today’s
networks are short-lived [14]; i.e. asymptotic analysis just
by themselves may not be sufficient in most cases.

Another utility of these algorithms is as follows: Deter-
mining a statistically accurate estimate of the queue-size
distribution of a queue, either an asymptotic or a time-
dependent one, via measurements is a labor-intensive task
and is not trivial to do, especially for long-range dependent
traffic. Instead of trying to measure such a distribution,
we can tightly dictate the distribution that the source is
desired or foreseen to induce, by using Q-Composer or CpR;
hence, know a tight estimate of the distribution a priori.

An issue of concern about CpR is the queueing experi-
enced in buffer B in externally regulating a traffic source.
The combination of queueing in buffer B and in subsequent
network elements is what a source traffic experiences end-
to-end. However, this effect of buffer B is there to stay as
long as an unknown traffic is decided to be regulated ex-
ternally. The same issue also exists in regulating unknown
traffic by the well-known Leaky-bucket regulator. However,
this problem does not exist in regulating/generating traffic
internally by using Q-Composer.

Future work includes a) comparing Q-Composer with
other traffic generators, b) investigating other properties
of interest (e.g. self-similarity, long-range dependency) of
traffic synthesized by Q-Composer—however, queueing be-
havior might be considered as the single most important
traffic characteristic as far as performance evaluation goes,
which Q-Composer and CpR has already addressed—, and
finally ¢) studying connection admission control by using
Q-Composer and CpR.

References

[1] R. L. Cruz. Quality of Service Guarantees in Virtual Cir-
cuit Switched Networks, IEEE Journal of Selected Areas in
Communication, 13(6): 1048-1056, 1995.

[2] H. Sariowan. A Service-curve Approach to Performance
Guarantees in Integrated-service Networks. Ph.D. Disserta-
tion, Department of Electrical and Computer Engineering,
University of California, San Diego, 1996.

[3] Q. Yin, Y. Jiang, S. Jiang, P. Y. Kong. Analysis on Gen-
eralized Stochastically Bounded Bursty Traffic for Commu-
nication Networks, Proc. of the 27th IEEE Conference on
Local Computer Networks (LCN), Nov. 2002.

[4] S. Ayyorgun, W. Feng. A Systematic Approach for Provid-
ing End-to-End Probabilistic QoS Guarantees, Proc. of the
13th IEEE International Conference on Computer Commu-
nications and Networks (ICCCN), pp. 115-122, Oct. 2004.
(Also available at http://public.lanl.gov/sami .)

[6] S. Ayyorgun, S. Vanichpun, W. Feng. Probabilistic QoS
Guarantees over Switches and Multiplezers, Proc. of the
42nd Annual Allerton Conference on Communication, Con-
trol, and Computing (ALLERTON), Sept. 2004. (Also
available at http://public.lanl.gov/sami .)

[6] O. Yaron, M. Sidi. Performance and stability of communi-
cation networks via robust ezponential bounds, IEEE/ACM
Transactions on Networking, 1(3): 372-385, 1993.

[7] C. S. Chang. Stability, Queue Length, and Delay of Deter-
ministic and Stochastic Queueing Networks, IEEE Trans-
actions on Automatic Control, 39: 913-931, 1994.

[8] D. Starobinski, M. Sidi. Stochastically Bounded Burstiness
for Communication Networks, IEEE Transactions on Infor-
mation Theory, 46(1): 206-212, 2000.

[9] S. Ross. Simulation, Academic Press, 3rd edition, 2001.

W. Feller. An Introduction to Probability Theory and Its
Applications, Volume 1, Wiley, 3rd edition, 1968.

R. L. Cruz. A Calculus For Network Delay, Part I: Network
Elements In Isolation, IEEE Transactions on Information
Theory, 37(1): 114-131, 1991.

C.-S. Chang. Performance Guarantees in Communication
Networks, Springer Verlag, April 2000.

J.-Y. Le Boudec, P. Thiran. Network Calculus: A Theory
of Deterministic Quewing Systems for the Internet, Lecture
Notes in Computer Science-2050, Springer, 2002.

[14] K. Park, W. Willinger (editors). Self-Similar Network Traf-
fic and Performance Evaluation, Wiley, 2000.

[12]

[13]

A Correctness of Q-Composer

The correctness of Q-Composer is given by Theorem 1. We
use the following lemma in proving Theorem 1.

Lemma 1 Let Y and Z be any two independent random
variables, and let W be a nonnegative random variable in-
dependent from both Y and Z. The random wvariable V.
defined as V 2 min {Y + W, max{Y, Z}} satisfies

P(V>v)=PY +W >v)-P(Z>v) +

PY >v)-P(Z<wv) forallwv.
Proof: The following equalities hold for any v;

P(V > v) = P(min {Y + W, max{Y, Z}} > v)

{Y +W > v} n{max{Y, Z} > v})

(Y +W >0} N ({Y>U}U{Z>v}))

I
~ T© 9

{Y+W>ovin{Y >v}) U
({Y+W>v}ﬂ{Z>v}))

(
(
(
P

(v >v} U {Y+W>v}ﬂ{Z>v}))

- (Y>v)+P({Y+W>v}ﬂ{Z>v})—
P({Y>v}ﬂ{Y+W>v}ﬂ{Z>v})

=PY >v) + PY+W >v)-P(Z>v) —

P{Y >v}n{Z > v})

=PY >v) + PY+W>wv)-P(Z>v) -
PY >v)-P(Z >wv)

P(Y >v): (1-P(Z > v))
PY>v)-P(Z<v). 1

=PY+W >v) -P(Z>v) +
=PY+W>v)-P(Z>v) +

Proof of Theorem 1:

Suppose that Composer-pmf produces an f4 which satis-
fies (3). Let R be a flow synthesized by Q-Composer for
the given Input. Feed R into a work-conserving server with
rate p, where the time origin is at 1. Let G’ denote the out-
put flow of this server. The proof follows by mathematical
induction on n.

Basis: Statement (4) clearly holds for all n less than 1; since
i) Q(n) = 0 for all n < 1, which holds by the convention in
this text that any work-conserving server is initially empty
and that the time origin is at 1, and ii) for any bounding
function f, f(o) =1 for all 0 < 0 and f(o) > 0 for any o.

Induction Step: Suppose that statement (4) holds for all n
less than some positive integer m—this is true by the in-
duction Basis which corresponds to m = 1. Next, we show
that (4) holds also for n = m.

Queue-size Q(m) of the work-conserving server that is
fed with synthetic flow R is given by

Q(m) = max {0, Q(m -p} (8)

The above equality holds by how a work—conservmg server
is defined to work. Note that Q(m) given by this equality
is identical to @Q(n) in (2) for n = m.

Using (8), we get for all o that

P(Q(m) > o) = P(max{O, Q(m—1)+r(m)—p} > O’)
:P({0> ctu{Q(m—1)+r(m)—p> a})
1 if 0 <0,
- {P(Q(m —1)+r(m)—p>o0) else. ©)

To determine the probability on the right-hand-side (rhs)
in (9), we substitute r(m) given by (1) and manipulate the
involved random variable as

Q(m — 1) +r(m) - p
= Q(m — 1)+ min { A(m), [X(m) + p— Q(m —
= min {A(m) +Q(m—1)—p,

'}

i

[X(m) +p = Qm =] +Qm—1) -}
= min {Q(m—l) —p+ A(m), max{Q(m—1) — p,X(m)}}.
Using Lemma 1 with the following substitutions;

Y =Q(m-1)—p, W= A(m), Z = X(m),

we get
P(Q(m —1)+r(m)—p> o)
=P(Q(m—1)—p+ A(m) >0) -P(X(m) >0)+

P(Qm —1)— p> o) - P(X(m) < 0)
=P(Q(m —1)+ A(m) >0 +p) -P(X(m) > 0) +

P(Qm —1)> 0 +p) - P(X(m) < o)
=P(Q(m—1)+ A(m) > 0o +p) - flo) +

P(Q(m —1)> 0 +p) - F(o).

<P(Qm—=1)+A(m)>0+p)-f(o) + f(o+p)-F(0), (10)
where in obtaining the last line from the previous, we uti-
lized the induction hypothesis.

Manipulate the probability on the rhs in (10) as;

P(Q(m —1)+ A(m) > o + p)
= 3 P(Q(m—1)+A(m) >U+p‘A(m):a) x
a:fa(a)>0 P(A(m) = a)
= Z P(Q)>a+p—a)-fA(a)
a:fa(a)>0

utilizing the induction hypothesis one more time, we get

< Y. flo+p—a)- fala)

a:fa(a)>0
=Y fle+p—a)- faa)
=(f*fa)(o+p), (11)

recall that operator ‘x’ stands for convolution in Linear Sys-
tems Theory.
Using bound (11) in (10), we get

P(Q(m—1)+

r(m) —p> o) <
(f*xfa)(o+p)-flo) + flo+p)-F(o).

Using the above bound in (9), we have

P(Q(m) > o)
< 1 if 0 <0,
S\ (fFxrfa)o+p) - flo) + flo+p)-Flo) else.

Finally, since f4 is chosen to satisfy condition (3) and
f(o) =1 for all o <0, the above inequality implies

P(Q(m) > o) < f(o) forall o. [|

B Composer-pmf: A Solution For f4

We present a solution for fs that satisfies condition (3).
The algorithm that we come up with to find the solution is
called Composer-pmf whose pseudocode is given at the end
of this section. The correctness of Composer-pmf is shown
by Steps 1, 2, and 3 preceding the pseudocode.

To begin with, we note by the following lemma that an f4
satisfying condition (3) always exists.

Lemma 2 There exists an fa which satisfies condition (3)
for any given p and f.

Proof: Let fa(a) = d(a — p) where 4 is the unit sample
function; i.e. §(u) =1 if w =0, and 0 otherwise. For this
particular f4, the convolution in condition (3) becomes
equal to f(o); this is shown below,

(f*fa)o+p) = Zfa+p—a) fala)

=fza+p—p)-fA() =

Using the above equality, we have

(f*fa)o+p)-flo) + flo+p)-F(o)
= flo) - f(o) + flo+p)-F(o)
< f(o)- f(o) + flo)-Flo) = f(o)- [f(o) + F(0)]

f(o).

= f(o).
the inequality above holds since f is nonincreasing and p is
nonnegative. |

The trivial solution given in the proof of Lemma 2 is not
necessarily the solution that we would use in Q-Composer.
A “better” solution can be found by applying a technique
in the o-domain, which is discussed in this section. Specif-
ically, we will find a solution which also satisfies another
condition, namely condition (19) pointed out later in the
text, in addition to condition (3).

Let us first give a very simple fact about the convolution
in condition (3) by the following lemma.

(f #fa)(o) <1

Proof: For any o, we have

Zfa—a - fala

Lemma 3 For any o,

(f*fa)lo

ZfA =1,

the inequality above holds since f(c) < 1 by definition. W

Next, we point out another simple fact; for values of o
that f(o) = 1 or f(o + p) = 0, condition (3) is always
satisfied. This is easy to show by using Lemma 3: For o
that f(o) = 1, we have

=(f*fa)(c+p)-1 + f(o+p)-0 =
<1 = f(o),

where the inequality follows by Lemma 3. Similarly, for o
that f(o + p) =0, we have

(f*fa)(o+p)-flo) + flo+p)-F(o)
= (f*fa)lo+p)-f(o) + 0 Flo) = (f * fa)lo+p)- (o)
< flo), (13)

where the inequality follows again by Lemma 3.

Thus, it is necessary and sufficient that we show condi-
tion (3) is also satisfied for any possible solution f4 over
the following set ¥ defined as

0<flo+p), flo)

A solution for f4 is found by the following three steps.

Step 1) If ¥ is empty, then it follows by (12) and (13)
that any valid pmf provides a solution for f4 satisfying con-
dition (3). However, there exists a selection of fas with
which Q-Composer generates flows that make statement (4)
be satisfied with equality for any positive n—such an equal-
ity is desired for tightness of performance bounds. Below,
we choose a simple such f4.

Let D denote the set {o : f(o) > 0}. The maximum of D
exists, which we prove next: It suffices to show that D is
not empty and that any ¢ in D is less than a constant. For
any negative o, f(o) = 1 which holds by the 2nd property
assumed for any bounding function (see Sec. 2). Thus, D
is not empty. Secondly, the emptiness of ¥ implies that for
any o either f(o) =1 or f(o 4+ p) =0. For all o, f(o) can
not be equal to 1; otherwise, the 3rd property assumed for
any bounding function (see Sec. 2) is violated. So, there
must exist a o* for which f(o* + p) =0. Since f is non-
increasing, any o in D must be less than ¢* + p. This
concludes the proof.

Let o1 denote the maximum of D;

(f* fa)(o+p)
(12)

DESE <1} (14)

o1 £ max{o: f(o) >0}.
For simplicity, we choose

fala) :== {1 it a=o1+p,

0 else,
and stop.
If ¥ is not empty, then go to Step 2.

Step 2) X is not empty. The minimum of ¥ exists,
which is easy to show: It suffices to show that any o in ¥

is greater than a constant. Since f(¢) =1 for any o < 0,
which holds by the 2nd property assumed for any bounding
function (see Sec. 2), any o in ¥ has to be positive.

Let 0¢ denote the minimum of ¥;

A .
0o = min X.

We point out two simple facts about ¥ by the following
two lemmas.

Lemma 4 For any o in X, f(o) > 0.

Proof: For any o in ¥, we have

flo) 2 fo+p) >0;

the first inequality holds since p is nonnegative and f is
nonincreasing, the second inequality holds since c€3. B

Lemma 5 For any o less than oy, f(o) = 1.

Proof: Any o less than og is not in ¥ by the definition
of op. Hence for any o less than og, either f(o) =1 or
f(o + p) =0, which follows from the definition of ¥. The
later statement (i.e. f(o + p) = 0) can not be true since

flo+p) > floo+p) >0;

the first inequality holds since 0 < 09 and f is nonincreas-
ing, the second inequality holds since oy belongs to X.
Therefore, f(o) must be equal to 1. [|

Now for o = 0y, the inequality in condition (3), which
needs to be satisfied, can be manipulated as follows;

(f* fa)(oo+p) - f(o0) + f(oo+p)- F(o0) < f(o0)
. f(o0) = f(o0 + p) - F(o0)
(f*fa)(oo +p) < F(o0)
floo + p) - F(o0)
f(o0) ’
the division above is allowed since f(op) > 0 by Lemma 4.

The convolution (f * fa)(oo + p) above can be manipu-
lated as follows;

=1- (16)

(f*fa)oo+p) = floo+p—a)- fala)

=Y floo+p—a)-fala)+_ floo+p—a)- fa(a),

since f(o) =1 for any o < op by Lemma 5, we get

Y floo+p—a)-fal@)+) fala)

a=0 a>p

[
M=

floo+p—a)-fa(a) + (1= Fa(p)).
0

2
Il

Substituting the last equality above into (16) and flip-
ping 1 — F4(p) over to the other side, we get

f(oo+p)-F (o)
f(o0) '

The rhs of (17) must be nonnegative as the lhs is. In
other words, Fa(p) has to satisfy

f(oo +p) - F(oo)
f(o0) '

This further implies that F4(p) has to be positive as the
term on the rhs in (18) is, which holds since f(og + p) > 0
and f(og) <1 as og belongs to ¥. This means that for at
least one a in [0, p], fa(a) has to be positive.

At this point we introduce another condition that we
would like fa to satisfy in addition to condition (3):

> floo+p—a)-fala) < Falp) -

a=0

(17)

Fa(p) >

(18)

The value of fa(a) being found by the current
method is progressively as small as possible for
anyain{a: a<p+o—o09, 0 €T}

(19)

By ‘progressively’ in condition (19) we mean that for any a;
less than ay, where a; and as belong to the set specified
n (19), fa(az) is as small as possible subject to fa(a1) be-
ing as small as possible in the current method of finding f4.
In other words, we first make sure that f4(a;) is as small as
possible, then make sure that f4(a2) is as small as possible.
How the set in (19) is specified will be clear later on by the
beginning of Step 3; for the time being one can consider it
as just a set of a’s.

We would want condition (19) be satisfied in addition
to (3), for the purpose of having tight performance bounds.

Now, since we know that for at least one a in [0, p] fa(a)
has to be positive, let us choose f4(a) := 0 for any a < p; as
motivated by condition (19). However, to be able to make
these assignments, we need to check if (17) can be satisfied
with this choice of f4(a)’s. Substituting these values of f4
into (17), we get;

F(00) - falp) < Fa(p) — 1170t P Floo)

f(o0)
£4(p) = $(o0) - falp) > LR Flo0)
f(o0)
Falp) - (1 _ f(Uo)) > floo -{J—c(p; -)F(UO)
falp) - F(oo) > f(oo ;80')“00)
f(oo +p)
falo) f(o0)

in obtaining the last inequality note that F(og) > 0 since
floo) <1 as op belongs to X. To satisfy condition (19), we
choose fa(p) to be equal to the rhs of the last inequality
above. Thus, in Step 2, we make the following assignments;

if a<p, (20)

0
fala) := { f(oo+p)
f(o0)

if a=p.

Note that the assignments in (20) satisfy (18).
Go to Step 3.

Step 3) Suppose that for some o in X, where o > oy,
we have found an assignment for f4(a) for all a less than or
equal to p + 0 — gp by the solution that we are presenting
(i.e. the current assignments make condition (3) be satisfied
for all o less than or equal to the o being supposed). This
statement clearly holds by Step 2. Let us represent the o
being supposed as ¢ = o9 + k — 1, where k > 1. Note that
the largest value of a that an assignment has been made so
far in the current assignment of fa (i.e. p + 0 — o9 by the
supposition) is equal to p + k — 1.

If o +1 is not in X, then we stop and make the assign-
ment fa(p+k):=1—Fs(p+k—1). Else, we proceed as
follows.

It is given that 0+ 1 belongs to ¥. We find an assignment
for fa(p + k) by considering the inequality corresponding
to o + 1 in condition (3) (i.e. the inequality obtained by
replacing o by o + 1 in condition (3)). This inequality needs
to be satisfied. We manipulate this inequality as we have
manipulated the one in obtaining (16), and get

flo+14p)-F(o+1)
flo+1)

Note that in getting (21), the division by f(o+1) is allowed
since f(o + 1) > 0 by Lemma 4 (as o + 1 belongs to X).

The convolution (f * f4)(c + 1 + p) can be manipulated
as follows;

(f*xfa)e+14+p) <1- (21)

(f*fa)(o +14p) = (f*fa)loo +k+p)

=S floo+k+p—a)- fala)

pt+k
_Zf ootk+p—a) fala Z floo+k+p—a) fa(a),
a=0 a>p+k

since f(u) =1 for any u < o¢ by Lemma 5, we get

p+k

=Y floo+k+p—a)-fal@+ > fala
a=0 a>p+k
pt+k

=> floo+k+p—a)-fala) + (1—Falp+k)).
a=0

Substituting the last equality above into (21), flipping
1—Fa(p+ k) over to the other side, and replacing o + 1
by oo + k, we get

p+k
> floo+k+p—a)-fala) <

= (o0 + k + p) - Fog + k)
f((f[) + k?)

Note that the rhs of (22) must be nonnegative as the lhs is;

Falp+k)—

(22)

i.e. Fa(p+ k) has to satisfy

floo+k+p)-Floo +k)
f(0'0+k)

We manipulate (22) by pulling up the term correspond-
ing to a = p + k in the summation and the term fa(p + k)
in Fa(p+ k) to the lhs of the inequality, and putting all
the rest of the terms to the other side. With that, we ob-
tain (25)—see the next page.

We would consider assigning the quantity on the rhs
of (25) to fa(p+k), as motivated by condition (19). But, we
first need to compare this quantity with 1 — Fa(p+ k — 1)
corresponding to the current assignments of f4 to ensure
that Fa(p + k) < 1 in order to have a valid pmf.

If this quantity being mentioned above is less than or
equal to 1 — Fu(p + k — 1), then we take the maximum of
this quantity with 0, assign that maximum to fa(p + k),
increment k£ by 1, and go to the beginning of Step 3.

Else (i.e. the rhs of (25) is greater than 1 — Fa(p+ &k — 1)
corresponding to the current assignments of f4), we need
to increase the value of f4(a) for some a’s less than or equal
to p+ k — 1 in the current assignment so that we can have
the rhs of (25) as less than or equal to 1 — Fa(p+ &k — 1)
corresponding to the new assignment. This is made possible
in this case (i.e. the ‘Else’ case), since the fraction multi-
plying fa(a) in the summation in (25) is greater than 1 for
at least one a in [0, p + k — 1]; this is what we show next.

For the rhs of (25) to be greater than 1 — Fa(p+ &k — 1)

for any assignment of fa, the fraction F;,‘T(‘g)k) must be

greater than 1: Note that (‘T%r)k) > 1 since F' is nonde-
creasing and k >

1. Suppose that this fraction is equal to 1,
then we have

Falp+k) > (23)

the rhs of (25)

_ f(00+k5+p
~ floo+ k)

p+k—1

Z fala

Flop+k+p—a)
F(00) ’

since f is nonincreasing and p is nonnegative, we get

p+k—1

ZfA

Floo+k+p—a)
F(09) ’

F(oo+k+p—a)
F(oo)
< p+k — 1 is greater than or equal to 1, hence

similarly, as F' is nondecreasing, the fraction
for any a

p+k—1

> fala)

F(oo+k)
ooy, > 1

We try to find a new assignment for f4 by increasing
the value of only one f4(a) for an a < p+ k — 1 in the cur-
rent assignment of f4 and by temporarily nullifying the
value of fa(a) for all a greater than the a that we choose

This concludes proving the claim that

p+k—1

i f(oo+k+p)-Flog + k)

floo) - falp+ k) — falp+ k) < Z floo+k+p—a)-fala Z fala floo + k)
. pt+k—1
fA(P+k)-(1—f(Uo))Zf(00+l}(+gf)+500+k Z fala) - (1= floo+k+p—a))
floo+k+p)-Floo + k) pH '
Falp k) - Flo) > TSRS - B fa@) - Flao + kot p=a) 2y
fal +k)>f(UO‘Fk*‘P)‘FUO*"“ pilf Floot+k+p-a) (25)
AW TR 2 T G k) Fo Ale F(o9) ’

the division in obtaining the last line above is allowed since f(o¢) < 1 as o belongs to X.

to increase the value of fa(a). Let a that we choose to in-
crease the value of fa(a) be represented as p + k — k* for
some k* > 1. To determine a new assignment for fa, we
need to consider satisfying inequality (26) corresponding
to the new assignment—see the next page. With that, we
obtain (28).

Motivated by condition (19), we would want to update
the value of fa(p+k —k*) by the quantity on the lhs
of (28). However, we first need to make sure that such an
assignment is feasible; i.e. this quantity should be i) non-
negative, ii) less than or equal to 1, iii) allowing a valid
probability assignment, and iv) greater than or equal to
the previously assigned value of fa(p+ k — k*).

The restrictions ‘i)’ and ‘iv)’ hold by the ‘Else’ case,
which are shown by (29)—see the next page. Since the
previous assignment of f4 is a valid assignment, (29) shows
that the quantity that we are hoping to update the value
of f4 at p+ k — k™ is positive and greater than the previ-
ously assigned value of fa(p + k — k*). We need restric-
tion ‘iv)’ to hold in order for condition (3) to remain sat-
isfied for o being equal to o9 + k — k*—this ¢ is not the o
being supposed at the beginning of Step 3.

For the other two restrictions, i.e. ‘ii)’ and ‘iii)’ in the
paragraph before the previous one, we need to show that the
lhs of (28) is less than or equal to 1 — Fa(p + k — k* — 1).
This may or may not be true, thus we choose a k£* as defined
in (30)—see that last page. The minimum in the definition
of k* is motivated by condition (19).

We need to check if such a minimum defined in (30)
does always exist or not. First, let us inspect if in this
case (i.e. the ‘Else’ case) the set over which the minimum is
take in (30) is always nonempty. For u = k, the restriction

on u that % > 1 always holds as we already know that
F(O’g Jrk)
F(oo)
shown by (31)—see the last page—; note that (31) corre-
sponds to the other restriction on u = k. So, the set over
which the minimum is take in (30) is always nonempty.
Secondly, the minimum of the set in (30) always exist since
any u in the set has to be greater than or equal to 1 by the

> 1. The other restriction on u = k also holds as

F(ao-l—u)

Thus, as we now know that the quantity on the lhs of (28)
satisfies all the restrictions ‘i)’ through ‘iv)’ stated four
paragraphs ago, we can update the value of fa(p + k — k*)
by this quantity. We do this update. Furthermore,
if * =1, then we assign fa(p+k):=1—Fa(p+k —k*)
and increment k by 1. (This assignment of fa follows by
backtracking (28) with equality all the way up to (26) and
then comparing (26) with (25).) Else (i.e. k* > 1), we set
o:=09+ k—k*. Go to the beginning of Step 3.

Finally, we note that constraint (23), which is relevant
only for the assignments to be made for the k* =1 case or
before the ‘Else’ case, is satisfied by these assignments; this
can be noted by (24). This ends Step 3.

We summarize the above solution for f4 by giving the
pseudocode for Composer-pmf (i.e. the algorithm finding
this solution).

restriction that

Composer-pmf
Input: A rate p and a bounding function f.

Output: A pmf f4 which satisfies condition (3).

Body: Determine the set ¥ defined in (14),
if ¥ is empty, then
determine oy (i.e. the maximum of {0 : f(o) > 0}),
fA(Ul +p) =]->
fa(a) :==0 for all a# o1+ p,
else,
determine og (i.e. the minimum of ¥),
make the assignments in (20),
k=1,
while oy + k belongs to X, do
compute the quantity on the rhs in (25),
call this quantity rhs-of-25,
if rhs-0f-25<1— Fa(p+k —1), then
fa(p + k) := max{0, rhs-of-25},
k=Fk+1,
else,
determine k* defined in (30),
compute the quantity on the lhs in (28),

floo+k+p)- F00+k pilf F(oo+k+p—a)
ala

f(O'[) + k‘) F F(O'())

S1—Falp+k-1), (26)

since we temporarily choose for the new assignment that fa(a) := 0 for any a in (p + k — k*, p + k — 1], we have

f(oo +k+p)- F00+k "%:k*f Floo+k+p—a)
A

floo +k) - F(o F(oo)

S1-Falp+k—Fk), (27)

by pulling up the term corresponding to a = p+k—k* in the summation above and the term fa(p+k—k*) in Fa(p+k—k*)
to the rhs, and putting all the rest of the terms to the other side, we get

floo+k+p) Floo+k) . "HE™ (0o +k+p—a) e [Floo+ k)
ootk Foo) '~ 2 fA“[F(o0) 1]““”*’“) { F(o0) 1]’

now if we choose k* such that 1’(;?7(3) > 1, we get

flootk+p)-Flootk) _ q _ ptk—k*—1
f(oo+k)-F(oo)

.| F(oot+k+p—a)
T fala)- [Pl 1] *
F(0'0+k*) _1 ng(p+k_k) (28)
F(oo)

For the current assignment of f4, we have by the ‘Else’ case that

Floo+k+p)-F 00+k Jrzk:lf F(oo+k+p—a)
(o). TAo0tkFPma)

floo+k)-F F(o0)

>1—Falp+k—1),

by pulling up all the terms corresponding to a’s, where p + k — k* < a < p+ k — 1, in the summation on the lhs above
to the rhs of the inequality, and separating the terms in F4(p + k — k*) corresponding to the same a’s, we get

+k—k* p+k—k* p+k—1
f(oo+k+p)-F ag+k ! F(oo+k+p—a) F(oo+k+p—a)
fala —>1— fala) + fala) | ————-1],
Footh) Flow 2 F(o0) 2 @+ pﬂzm F(o0)
since %{W > 1 for any a in [0, p + k — 1], the last inequality above implies that we also have
floo+k+p)-F ao+k "*i"*f Flootk+p=a) | "“”‘i:k* fa(@
f(oo+k)-F ey !
applying the manipulations performed for the set of inequalities from (27) to (28) to the above inequality, we get
p+k—k*—1
floo+k+p)-F(oo+k F(oo+k+p—
(j(')(aoJrZ;-FEO'g)) -1- ago fA((l)[(OF(O'O)p e -1 .
F(0'0+k*) _1 >fA(p+k_k)’ (29)
F(oo)

where fa(p + k — k*) above is the previously assigned value to f4 at p + k — k*.

f(ootk+p)-F(ootk)

p+k—u—1

F(oo+k+p—a)
* F(oo+u) Floo+k)-F(oo) —1- = fa(a)- 017‘(700)_1] p+k—u—1
E* £ mind u: u <k, F(oo) > 1, Flootu) _ 4 <1- Z fa(a) 3. (30)
£(o0) a=0
p—1
Floo +k+p—a) } [(00 + k) }
a) - 1
ZfA() { Floo) ZfA o

floo+k+p)-Floo+ k) _1_‘)2:fA {F(ag+k+p—a)

f(oo + k) - F(oo)

flootk+p)-F(ootk)
f(oo+k) F(00)

F(0o)

ZfA() - [

(cot+k+p—a) 1]
F(oo)

F(UO + k) p F(og + k)
“F(oo) _1_ZfA [W_l}

_1}<

F(o +k)
Floo) L

the first inequality above holds since the smallest fraction multiplying f4(a) on the lhs is equal to

— 1 on the rhs; the second inequality holds since

(31)

p—1
<1-)Y fala)
a=0

F(oo+k+1 .

(Fo(io'g)() -1 V)Vthh

flootk+p
ootk S 1

as f is nonincreasing and p is nonnegative; finally, the division in obtaining the last inequality is allowed since we already

is greater than or equal to the identical fractions %{:g;”)
know that (‘T(°+)k) > 1.

call this quantity 1hs-of-28,
falp+k —k*) := lhs-0f-28,

if k* =1, then
Falp+ k) i=1— Fa(p+k — k),
ki=k+1,

else, k.= k—k*+1

end if,

end if,
end while,
end if,

falp+k):=1—Falp+k—1).
End Composer-pmf.

C Proof of Theorem 2

Let T denote an integer time specified as Input to CpR.
Feed any traffic obtained by CpR for the given Input into a
work-conserving server with rate p, where the time origin
is at T. Let (), denote the queue-size of the server.
First, we prove that the following simple statement holds;
Q- (T+n—-1)<Q(n) for all nonnegative n, (32)
where @Q(n) is given by (5). The proof follows by math-
ematical induction on n: (Basis) Q.(T — 1) =0 = Q(0)
which holds by the convention in this text that any work-
conserving server is initially empty, that the time origin is
at T, and Q(0) =0 as specified in CpR. (Induction Step)
Suppose that (32) holds for some nonnegative n—this is
true by the induction Basis which corresponds to n = 0.

The following relations show that (32) holds also for n + 1;

Qr(T +n) =max {0, Q(T +n—1)+r(T +n) —p}

<max {0, Q(n) +r(T +n) — p}
< max {0, Q(n) + reyn(n + 1) — p}
:Q(n+1)7

where the first line follows by how a work-conserving server
is defined to work, the second line follows by the induction
hypothesis, the third line follows by (6). This concludes
showing that (32) holds.

The following relations hold for any n > 0 and all o}

{Q:(T+n—-1)>0} C{Q(n) >0}

taking the probabilities of both sides, we get

where the subset relation follows by (32) and the last line
follows by Theorem 1.
For any n < 0 and for all o, the following inequality

P(@Qr(T+n—1)>0) < f(o)

also holds, since Q,.(T +n —1) =0 (which holds by the
convention in this text that any work-conserving server is
initially empty and that the time origin is at T") and by the
2nd property assumed for any bounding function. |

(33)

